FOGALE *nanotech*, founded in 1983, is a worldwide known reference in the field of high accuracy dimensional metrology.

Thanks to our multidisciplinary team with expertise in capacitive, optical, and inductive metrology and a strong scientific background, we provide standard, specific and integrated solutions.

Our worldwide support provides the service you deserve, wherever your business is located. Our team of experts helps you setting up new systems and provides a complete range of after sales services : on-site installation and calibration, training, technical assistance, and upgrades.

> Our extensive line of high accuracy dimensional metrology sensors and systems, our experience and know-how, our after sales support as well as our commitment will guarantee your full satisfaction.

> > For more information about our products, visit our web site at www.fogale.com

distributed by JINSHANG Ltd. contact@jinshang.asia www.jinshang.asia

FOGALE nanotech

© Edition 2011/01-A4 - FOGALE nanotech - All right reserved

FOGALE nanotech

Lenscan system Gain deep insight into your lenses

Photography Cinema Photolithography **Custom optics** Microoptics Interferometer positioning

Lenscan system

Gain deep insight into your lenses

Lenscan Software

Complete set of functions

- Sample set-up, Sample definition with extensive list of known glass materials
- Automatic pattern matching
- Accuracy/Repeatability testing
- Statistics on measurement batch
- Monitoring of environmental conditions to ensure accurate optical index computation for internal delay line
- Specific linearity calibration procedure with high accuracy length standard, tested over the whole system range
- Motorized collimator option with wizard to find optimal setting

Straightforward measurement procedure

- Load/Save predefined measurement
- recipes with tolerances
- **V** Single button
- 4 GO / NO GO validity indicator
- ✓ Output PDF report files

Measurement of microscope objectives, imaging optics, photolitography optics, ...

The Lenser system allows the direct measurement of the position and the center thickness of all optical elements (lenses, cubes, flats...) of an assembly along the optical axis.

It can be used with large benefits in terms of time saving and quality assessment at all steps of the optical design and manufacturing process.

GLASS THICKNESSES OF A DOUBLET

How does it works?

Up to 600 mm measuring range

Optoelectronic units	Lenscan 40	Lenscan 200	Lenscan 600	Lenscan (+) 600
	Single Unit		Electronic Unit / Separated Delay Line	
Internal metrology	Linear scale	Linear scale	Linear scale	Laser interfometer
Measurement range	40mm	200mm	600mm	600mm
Measurement time or frequency	< 2 s	< 10 s	< 30 s	< 30 s
Absolute accuracy (± µm)	1	1	1	< 0.15
Measurement channels	Up to 4	Up to 4	Up to 4	Up to 4
Working distance (mm)*	150	250	600	600
Minimum measurable thickness (µm)		< 30 µm (option : < 10 µm) in air		
Light source		SLD $\lambda = 1.3 \mu m$		
*I In to several meters on request				

A range of collimators for the best responses to all situations

Thanks to our range of collimators, we can find industrial solutions to all your needs. With the large angular acceptance and/or working distance of our collimators, the LeNSCAN system is easy to use and to integrate in your environment.

Collimators	CR 18 -10 (manual)	CR 40-30 (manual)	CM 50-30 (motorized)	CR 3.3 (fixed)
Main application		Micro lenses		Glass thickness
Working distance from the tip on the fiber (min – max)	60 mm 1 m	150 mm 15 m	150 mm 15 m	36 mm 1000 mm
Depth of field (Rayleigh distance)	4 mm 3 m	2 mm 70 mm	2 mm 70 mm	50 mm
Spot size corresponding to the working distance	30 µm 800 µm	20 µm 4mm	20 µm 4 mm	200 µm
Angular acceptance corresponding to the working distance	2.2° 0.08° (5')	3.3° 0.016° (1')	3.3° 0.016° (1')	0.2° 0.02°
Collimator mechanical diameter	16mm	50mm	(L) 97mm x (l) 67.4 mm x (H) 79.5 mm	3.3/4.2
Mount type	1" mount	2" mount	2" mount	3.3 mm hole non threader

THICKNESS OF AN OPTICAL FLAT

AIR GAPS AND LENSES THICKNESSES INSIDE AN OBJECTIVE

DENTIFICATION OF WRONG OR BADLY POSITIONED ELEMENTS IN AN OBJECTIVE

THICKNESS OF BALL LENS

1 – Light emitted by a SLD is coupled into a monomode optical fiber

2 – The light is splitted between the measurement arm and the reference arm

3 – The light coming back from both arms is directed onto a photodetector

4 – When the optical lengths of the measurement arm and of the reference are equal, interferences are visible on the photodetector

5 – High stability mechanics, specific calibration procedure, usage of internal thermal probe and precise index computation enable high accuracy